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Employing semiclassical circuit theory, we study the charge-transfer statistics of a quantum dot �chaotic
cavity� connected to a normal metal and a superconducting reservoir via two non-ideal barriers. We assume the
absence of a magnetic field and a low-energy regime so that the energy dependence of the Andreev reflection
eigenvalues can be neglected. We calculate analytically the first three charge-transfer cumulants and the density
of Andreev reflection eigenvalues. We observe an interesting signature in the charge-transfer cumulants of a
quantum transition that takes place in the chaotic cavity �A. M. S. Macêdo and A. M. C. Souza, Phys. Rev. E
71, 066218 �2005�� associated with the formation of Fabry-Perot modes. Our results compare well with
numerical simulations obtained from the scattering matrix formalism.
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I. INTRODUCTION

Hybrid normal-metal-superconductor �NS� mesoscopic
devices are important model systems in which to study the
interplay between normal metal phase-coherent phenomena
and superconductor-induced proximity effects. Observed
phenomena in these devices build on the underlying micro-
scopic mechanism of conversion of an electron-hole quasi-
particle pair in the metallic terminal onto a Cooper pair in the
superconductor. The conversions take place at the NS inter-
face via Andreev reflections.1

An efficient way to describe charge transport in a mesos-
copic device is to study its full counting statistics �FCS�,2
which amounts to determining the probability, Pn�T0�, that n
units of charge are transferred during the observation time
T0. The value of Pn�T0� depends both on quantum-
mechanical uncertainties of the transmission process and on
the Pauli principle. A typical mesoscopic device consists of a
phase-coherent conductor connected to two metallic reser-
voirs. It is convenient to characterize the mesoscopic con-
ductor via its set of transmission eigenvalues �� j�, i.e., the
eigenvalues of tt†, where t is the transmission matrix. The
FCS of the mesoscopic conductor is fully characterized by
specifying the characteristic function eM0������nPn�T0�ein�,
where M0=eVT0 /h is the number of transmission attempts
per channel, and V is the voltage applied through the sample.
At zero-temperature ���� describes independent binomial
processes

���� = �
j=1

N

ln�1 + � j�ei� − 1�� . �1�

Transport observables are given simply by derivatives of
���� at �=0. The dimensionless conductance and shot-noise
power, e.g., are given, respectively, by g=−i���0�=� j� j and
p=−���0�=� j� j�1−� j�. In the presence of chaotic scattering
random matrix theory predicts that the transmission eigen-
values of the mesoscopic conductor become correlated ran-
dom variables and consequently ���� fluctuates, thus mak-
ing it an incomplete characterization of the charge transport
process. In the semiclassical regime, defined by a large

number of open channels N�1, we may neglect these fluc-
tuations and describe ���� by means of a circuit theory.3

In NS hybrid structures the charge transport statistics is
conveniently described at energies much lower than the
Thouless energy and in the absence of a magnetic field in
terms of Andreev reflection eigenvalues �rj�, i.e., the
eigenvalues of sehseh

† , where seh is the Andreev reflection
matrix. The corresponding characteristic function, denoted
�NS���, is given by Eq. �1� with Andreev reflection eigen-
values �rj� replacing the transmission eigenvalues �� j�. The
dimensionless conductance and shot-noise power read
gNS=−i�NS� �0�=� jrj and pNS=−�NS� �0�=� jrj�1−rj�, respec-
tively. There is a simple relation between Andreev reflection
eigenvalues and transmission eigenvalues, given by
rj =� j

2 / �2−� j�2, which can be used to calculate transport ob-
servables of NS systems using the statistical properties of
transmission eigenvalues.4

An important feature of NS structures is the appearance of
a transport regime denominated reflectionless tunneling,5 in
which there is a gradual transition from two-particle to
single-particle tunneling as one lowers the transparency of
the NS interface. If the mesoscopic conductor consists of a
difusive metal the reflectionless tunneling regime is associ-
ated with disorder-induced openings of tunneling channels,5,6

i.e., the emergence of transmission eigenvalues close to one.
A similar effect occurs in a double-barrier junction,7 if one
varies the transparency of one barrier while keeping the other
fixed. The model used in Ref. 7 contains the assumption of
non-overlapping transmission resonances with independent
random-phase shifts, which is not appropriate for ballistic
chaotic cavities. A more flexible model is obtained by using
Nazarov’s circuit theory.6,8 Using this approach, Vanević and
Belzig9 studied the first three FCS cumulants of an NS sys-
tem composed of a quantum dot ideally coupled to asymmet-
ric leads. The energy dependence of the average density of
Andreev eigenvalues was studied in Ref. 10 using a circuit-
theory-like quasiclassical Green’s-function approach. They
found that at energies on the order of the Thouless energy,
the proximity effect causes the opening up of resonant
particle-hole channels, i.e., the emergence of Andreev reflec-
tion eigenvalues close to unit.
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The opening up of resonant transmission channels, upon
varying the transparencies of a double-barrier chaotic ballis-
tic cavity, was studied in Ref. 11, where it was interpreted as
a quantum transition associated with the emergence of
Fabry-Perot resonances inside the cavity. Although it can be
easily seen in the average density of transmission eigenval-
ues in the semiclassical limit, it does not show up in any of
the FCS cumulants, thus making it hard to observe experi-
mentally. There has been two proposals of signatures of this
transition in observable quantities. In the first one12 the sys-
tem is embedded in an electromagnetic environment, which
emulates a weak Coulomb interaction, and the transition can
be seen in the Fano factor at low temperatures and low volt-
ages. In the second proposal13 a signature of the transition is
shown to appear in the low-transmission tail of the transmit-
ted charge distribution.

In this work we study the quantum transition in the pres-
ence of the proximity effect. Using a scalar version of circuit
theory, we calculate the first three cumulants of charge-
transfer statistics of an NS system that consists of a ballistic
chaotic cavity coupled via barriers of arbitrary transparencies
to a normal metal and a superconducting reservoir. We verify
that all three cumulants show distinctive features around the
transition lines. These results agree well with independent
numerical simulations. This paper is organized as follows: in
Sec. II we present a formulation of the generating function of
FCS in our NS systems as a scalar circuit theory, thus ex-
tending the formalism presented in Ref. 14. In Sec. III the
scheme is used to calculate the average density of Andreev
reflection eigenvalues. Two cases with simple analytical so-
lutions �a chaotic cavity with symmetric barriers and one
with tunnel junctions� are discussed before a more complex
case �a chaotic cavity with an ideal contact and a barrier of
arbitrary transparency� is considered. Through the analysis of
the average density of Andreev reflection eigenvalues in the
latter case we show the emergence of the reflectionless tun-
neling regime as we vary the transparency of the barrier. In
Sec. IV the general case of a chaotic cavity with two barriers
of arbitrary transparencies are presented. We compute the
first three FCS cumulants and verify that such observables
exhibit a signature of the quantum phase transition as we
vary the barriers transparencies. Results for the Fano Factor
and the Skewness, defined as the ratio between the third and
the first cumulants, are also presented. Finally, the average
density of Andreev reflection eigenvalues are calculated and
we are able to observe the emergence of resonant channels
with eigenvalues close to one upon varying the transparen-
cies of the barriers. A summary and conclusions are pre-
sented in Sec. V.

II. CIRCUIT THEORY AND FCS

In this section we present a circuit-theory approach to
calculate the generating function of charge-transfer statistics
of an NS device. We start by writing the FCS generating
function in terms of Andreev reflection eigenvalues �rj� as
follows:

�NS��� = �
j=1

N

ln�1 + rj�ei� − 1�� . �2�

We assume low temperature and low voltage so that
max�eV,kBT��min�ETh, 	�	�, where ETh is the Thouless en-
ergy and � is the superconducting order parameter. Under
this condition we can neglect the energy dependence of the
scattering matrices and thus the Andreev reflection eigenval-
ues rj are also energy independent. In the presence of chaotic
scattering the eigenvalues �rj� become random and corre-
lated, so that we may introduce the average generating func-
tion

S��� � 
����� = �
0

1

dr�NS�r�ln�1 + r�ei� − 1�� , �3�

where �NS�r�=�n
��r−rn�� is the average density of Andreev
reflection eigenvalues. In the semiclassical regime, character-
ized by a large number of open scattering channels N�1,
�NS�r� becomes a well-behaved smooth function. With this in
mind, we define the following auxiliary function

gNS�	� = − i �S���
��


ei�=1−	2

= �
0

1

dr�NS�r�
�1 − 	2�r
1 − 	2r

. �4�

Using gNS�	� the FCS cumulants can be obtained through
the formula

ql+1 = �	2 − 1

2	

d

d	
�l

gNS�	�		=0; l = 0,1, . . . . �5�

It is also convenient to introduce the following change in
variables, r=sech2 x, and define the new average density

NS�x�, which is obtained from gNS�	� through


NS�x� =
2

�
Im� i	

�1 − 	2
gNS�	�		=cosh x� . �6�

The density 
NS�x� is directly related to �NS�r� via the trans-
formation formula

�NS�r� =

NS�cosh−1�1/�r��

2r�1 − r
. �7�

Let us now formulate the calculation of gNS�	� as a problem
in circuit theory. We start by defining the function

F��� � �
0

1

d�
�����

1 − � sin2 �/2
, �8�

where ����=�n
���−�n�� is the average density of transmis-
sion eigenvalues. One can express gNS�	� in terms of F��� as
follows:

gNS�	� = −
1 − 	2

4	
�F+�	� − F−�	�� , �9�

where
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F�	� = F���	sin2 �/2=�1−	2�/�2�1	��. �10�

The main advantage of the circuit-theory approach is the fact
that F��� can be calculated directly without having to calcu-
late ���� first.

Our presentation of quantum circuit theory will be brief,
for a more detailed description we recommend Refs. 3, 6, 8,
and 14. A central concept in circuit theory is the pseudocur-
rent defined as I����sin �F���, in which � plays the role
of a pseudopotential. To be specific, we consider a mesos-
copic system consisting of a ballistic chaotic cavity coupled
via barriers of arbitrary transparencies to two electron reser-
voirs. In circuit-theory language the reservoirs and the cavity
are represented as terminals and nodes, respectively, with
associated pseudopotentials. The basic circuit-theory equa-
tion for this system is the conservation law for the
pseudocurrent

I��� = I1�� − �� = I2��� . �11�

In circuit theory the barriers play the role of connectors
whose “current-voltage” relations are given by

Ij��� j� =
2NjTj tan��� j/2�

1 + �1 − Tj�tan2��� j/2�
; j = 1,2, �12�

where Nj denotes the number of open scattering channels in
the j-th connector, Tj is the connector’s transparency, and
�� j represents the pseudopotential drop along the connector.
The basic problem is the determination of the pseudopoten-
tial � at the central node. Defining the variable �=tan � /2 we
can rewrite the second equality of Eq. �11� as the following
polynomial equation:

T1�1 − T2���4 + �1 + 2a�T1T2��2

+ ���aT2 − T1�1 − T2���2 + aT2�1 − T1� + T1�1 − T2����3

+ ��aT2�1 − T1� − T1��2 + T1 + aT2�� − T1� = 0, �13�

where �=tan � /2 and a=N2 /N1. With the solution to this
equation we compute F��� and finally obtain gNS�	� via the
relation

gNS�	� =
�1 − 	2

2	
� N2T2�−

1 + �1 − T2��−
2 −

N2T2�+

1 + �1 − T2��+
2� ,

�14�

where � is the physical solution of Eq. �13� with � chosen
as �=��1�	� / �1	�.

In the next section we shall use gNS�	� to calculate the
average density of Andreev reflection eigenvalues. This
quantity displays a clear signature of the quantum transition
reported in Ref. 11 as we vary the barriers transparencies.

III. AVERAGE DENSITY OF ANDREEV REFLECTION
EIGENVALUES

We begin this section by treating two simple cases in
which we can compute very simple analytical expressions
for �NS�r� using circuit theory. The first system is a chaotic
cavity with symmetric barriers, so that T1=T2=T. With this

simplification Eq. �13� factorizes and the physical root can
be obtained from the following quadratic equation:

a��2 + �1 + a�� − � = 0 �15�

Inserting the physical root into Eq. �14� we obtain gNS�	�,
which we use to calculate 
�x� via Eq. �6�. Finally, from Eq.
�7� we derive �NS�r� which reads

�NS
sym�r� =

N

�

T�1 + �r�
�r�1 − r�

��r� , �16�

where ��r� is a well-behaved function at r=0 and r=1,
which is given by

��r� =
�2 + T�� + �2 − 7T�r

�T� + �8 − 7T�r�2 + 16r�� − 3r�
, �17�

where �= �1+2�r�. Note in Eq. �16� the presence of inverse
square-root singularities for r close to both one and zero.

The other simple case is that of a chaotic cavity with two
tunnel junctions, i.e., barriers of transparencies that are much
smaller than one �T1 ,T2�1�. In this tunnel junction regime
the average density �NS�r� is given by

�NS
tunn�r� =

N

2�2�

G1G2

G1 + G2

1

r5/4��r0 − 2��r + r0

, �18�

where Gj =NjTj and, r0=4G1G2 / �G1+G2�2. Note that Eq.
�18� displays a r−5/4 singularity when r is close to zero. This
result agrees with the zero-energy limit of the Andreev re-
flection eingenvalue density obtained in Ref. 10 for double-
tunnel junction. The main qualitatively difference between
Eq. �18� and Eq. �16� is the absence of the inverse square-
root singularity at r=1 in Eq. �18�.

In order to examine in more detail the rise of the singu-
larity at r=1, we consider a quantum dot coupled to two
reservoirs �a normal metal and a superconductor� via an ideal
contact and a barrier of arbitrary transparency. The main re-
sult of this section is the nonzero value of the density of
Andreev reflection eigenvalues close to x=0 �
NS�0��0� as
we vary the barrier transparency. We shall see that 
NS�0�
may be used as an order parameter to the quantum transition
described in Ref. 11. In circuit theory this system is de-
scribed by setting T1=1 and T2=T in Eq. �13�, which factor-
izes so that the physical root is obtained from the following
cubic equation:

�1 − T��3 + ��1 + a�T − 1���2 + �1 + aT�� − � = 0. �19�

Substituting the physical root in Eq. �14� and inserting gNS�	�
into Eq. �6� we obtain the density 
�x�.

In Fig. 1, we show the density 
NS�x� for several values of
the barriers’ transparency. We observe that 
NS�0�=0 for
T�0.5 and 
NS�0��0 for 0.5�T�1. In this case 
NS�0� is
similar to an order parameter of a second-order phase tran-
sition. This order parameter signals the appearance of Fabry-
Perot modes inside the cavity as pointed out in Ref. 11. The
emergence of Fabry-Perot modes inside the dot are con-
nected to the observation of the reflectionless tunneling re-
gime in double-barrier NS structures. From the analytical
solution, we find the behavior of 
NS�0� as a function of T
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NS�0� =
N2

�
Re���a + 1�T − 1

a
� . �20�

This coincides with the result obtained for the NN case �two
normal leads� discussed in Ref. 11 after it is divided by a
factor 2. We also investigated the behavior of 
NS�x� when x
is close to zero for T=0.5 �see inset of Fig. 1�, a 1/3 power-
law behavior was obtained through analysis of Fig. 1


NS�x� � x1/3, x → 0. �21�

This same power-law behavior was found in Ref. 11 for two
normal leads. In the next section we shall fully explore the
advantage of the circuit-theory approach and describe the
transition line in the T1T2 plane. We will also show that the
first three FCS cumulants exhibit signatures of the transition
as one crosses the transition lines.

IV. QUANTUM TRANSITION AND FCS CUMULANTS

In this section we consider the general case of arbitrary
transmission coefficients T1 and T2, and investigate possible
signatures of the quantum transition in the average NS cu-
mulants. We also show that the regularizing property of

NS�0�, which can be interpreted as the density of Fabry-
Perot-like modes, is preserved in the general case showing
that it can be used as an indicator of the onset of the reflec-
tionless tunneling regime in the system. In order to simplify
our analysis we introduce the following auxiliary variables
�=T2�1+T1� /T1 and �0= �1+T1� / �1−T1�. We shall consider
the general case of asymmetric barriers �N1�N2�. As shown
in the previous section the analysis starts by solving the quar-
tic equation given by Eq. �13�.

A simple procedure to compute the cumulants is to power
expand gNS�	� about 	=0 and extract the value of the cumu-
lants from the expansion coefficients. Inserting the pertuba-
tive expansion

� = A  B	 + C	2  D	3 + E	4  F	5. . . �22�

and

� = 1 � 	 +
1

2
	2 �

1

2
	3 +

3

8
	4 �

3

8
	5. . . �23�

into Eq. �13� one can show that the coefficient A is obtained
by solving the following quartic equation:

T1�1 − T2�A4 + aT2�2 − T1�A3 + �1 + 2a�

T1T2A2 + a�2 − T1�T2A − T1 = 0. �24�

The coefficient B can be written in terms of A as follows:

B =
T1A���2 + a�T2 − 2�A2 − 2 − aT2�

4�1A3 + 3�2
−A2 + 2T1T2�1 + 2a�A + �2

− , �25�

where �1=T1�1−T2� and �2
−=aT2�2−T1�. In the Appendix

we provide explicit expressions for the higher-order expan-
sion coefficients C, D, E, and F. Substituting Eq. �22� into
gNS�	�, Eq. �14�, we find the following power expansion:

gNS�	� = �0 + �1	2 + �2	4 + . . . , �26�

where the coefficients �0, �1, and �2 are shown in the Ap-
pendix. The first three cumulants, obtained from Eq. �5� are
given in terms of such coefficients as follows:

gNS = 2q1 = 2�0, �27�

PNS = 4q2 = − 4�1, �28�

and

CNS = q3 = 2�2 − �1. �29�

In Fig. 2, we show the behavior of the first three
cumulants for T1=0.1. In the top panels we have the NS
resistance �left panel�, RNS �solid line�, as function of the
inverse of the second barrier, and the NS conductance
�right panel�, GNS �=1 /RNS� �solid line� as function of the
auxiliary parameter �. In the bottom panels the NS power
shot-noise power �left panel�, PNS, and the third cumulant
�right panel�, CNS, are shown as a function of �. The corre-
sponding observables of the NN case �dashed lines� are also
shown for comparison. The vertical dashed line at �=1 serve
as a “guide to the eye” to identify the change in behavior of
the NS cumulants when Fabry-Perot modes appear in the
system. As discussed in Ref. 11 �=1 defines a transition line
in the T1�T2 diagram. The minimum in the NS resistance
signals a gradual transition between the reflectionless tunnel-
ing regime and the usual two-particle tunneling regime
which occur at normal superconductor interfaces. In the re-
flectionless regime one of the quasiparticles of Andreev’s
process tunnels the entire sample without suffering reflec-
tion. Therefore a transport process which in principle in-
volves two particles is effectively converted into a one-
particle process. We point out the interesting behaviors of the
second and third cumulants near the point �=1. The results
plotted in Fig. 2 show an increasing sensitivity of higher-
order cumulants to the quantum transition in doubled-barrier
dots.

We have also calculated the second and third cumulants
using a numerical implementation of the scattering matrix
approach. The ensemble is constructed by combining the

0.1

0.2

0 2 4

ν N
S

(x
)/

x1/
3

x

T=0.5

0

0.1

0.2

0.3

0 2 4

ν N
S

(x
)

x

FIG. 1. Level density 
NS�x� for T1=1 and T2=1 �full line�,
T2=0.8 �dashed line�, T2=0.5 �dashed-dotted line�, and T2=0.3
�dotted line�. The inset shows the behavior of 
NS�x� divided by x1/3

for T2=0.5.
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fixed scattering matrix of the two barriers, which are charac-
terized by the transmission coefficients T1 and T2, with a
stochastic scattering matrix belonging to the Circular Or-
thogonal Ensemble �COE�, which accounts for the chaotic
scattering inside the dot. The transmission matrix t of whole
structure is obtained and used to calculated the Andreev re-
flection matrix she. In our numerical procedure we consider
symmetric leads with 50 open channels, i.e., N1=N2=50, and
perform the ensemble average with 1000 realizations of the
random matrix she. The numerical results are in good agree-
ment with our analytical expressions as can be seen from
Fig. 3, where we plot the shot-noise power and the third
cumulant.

We point out that the scattering approach gives all quan-
tum corrections �weak localization and higher order� while
circuit theory gives only the dominant term in the expansion
in inverse powers of N. Effects of these quantum corrections

can be seen in Fig. 3. It is possible to calculate analytically
the weak localization correction on the FCS characteristic
function of a double-barrier quantum dot if we go beyond
circuit theory. Possible routes include the use of diagram-
matic methods15 for integration over the unitary group and a
recent extension of circuit theory which incorporates quan-
tum corrections.16 In Ref. 17 the authors calculated the
weak-localization correction to the shot-noise power for a
chaotic cavity coupled non-ideally to normal reservoirs using
both methods and reported an unexpected amplification-
suppression transition in the shot-noise power as we vary the
number of open channels and the barriers’ transparencies.

We also study the behavior of Fano factor, defined as
FNS= PNS /GNS, and the skewness factor SNS=CNS /GNS,
which are shown in Fig. 4, for several values of the first
barrier transparency T1. One can see that both factors exhibit
a sharp decrease near �=1.

Finally, we have calculated the average density 
NS�x�,
Eq. �6� for arbitrary T1 and T2. In Fig. 5 the three-dimension
plot of 
NS�x� at x=0 as a function of barriers transparencies
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FIG. 2. The first three NS cumulants �solid
lines� are shown in comparison with the normal
cumulants �dashed lines�, with T1=0.1. The right
vertical axis refers to the normal observables’
scales. In the top left �right� panel we show the
NS resistance �conductance� as a function of the
second barrier transparency. In the bottom panels
we show the shot-noise power �left� and the third
cumulant �right�. The vertical line at �=1 helps
us to visualize the signature of the quantum tran-
sition in the NS cumulants.
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T1, and T2 is shown. We observe that the lines �=1 and
�=�0 delimit the region where 
NS�0��0, indicating that it
may have the role of an order parameter, in agreement with
the results of Ref. 11 for NN systems.

In terms of � and �0 we can write 
NS�0� as follows:


NS�0� =
N

����0��−1���0−��
�+�0

; 0 � � � �0

0; otherwise.
� �30�

This expression coincides with the one obtained in Ref. 11
for NN systems if the latter is divided by a factor 2.

V. SUMMARY AND CONCLUSIONS

In this work we studied the full counting statistics �FCS�
of charge-transfer events of a quantum dot connected to a
normal metal and a superconducting reservoir via barriers of
arbitrary transparencies using the scalar version of quantum
circuit theory. We started extending the scheme presented in
Ref. 14 to calculate the FCS generating function of NS hy-
brid systems. The charge transmission events in an NS sys-
tem are controlled by Andreev reflection eigenvalues, rn,
which in the absence of an external magnetic field and in the
low-energy regime can be expressed in terms of the trans-
mission eigenvalues, �n, of a similar NN system obtained by
replacing the superconducting reservoir by a normal one.
Through a careful analysis of the Andreev reflection eigen-
value density, �NS�r�, we observed a gradual transition be-
tween the reflectionless tunneling regime and the standard
tunneling regime in NS hybrid structures. This crossover is a
consequence of a quantum transition taken place at the quan-
tum dot, which is related to the formation of Fabry-Perot
modes inside the cavity.11 The regularized density, 
NS�x�,
near x=0 �r=1� can be used as an order parameter of this
quantum transition. The NS charge-transfer cumulants �see
Fig. 2� reveal a strong sensitivity to the position of the tran-
sitions lines discussed in Ref. 11, which contrasts with the
insensitivity of the charge-transfer cumulants in the normal
case. All results were compared with numerical simulations

obtained from the scattering matrix formalism. Differently
from other signatures of the quantum transition proposed in
the literature, which appear as features in the tail of the trans-
ferred charge distribution13 or induced in the Fano factor by
a weak coulomb interaction, emulated by an electromagnetic
environment,12 the signals presented in this paper appear
naturally in the first FCS cumulants and could in principle be
measured experimentally. Recent measurements of higher-
order FCS cumulants in quantum dots with tunnable
barriers18,19 show that similar experiments with NS systems
may be within reach of current nanotechnology. In Ref. 20 a
good review of the experimental field of hybrid structures
�including NS systems� is presented. In this work the authors
describe the problem of low-temperature thermoelectrical
transport and discuss several experimental setups in which to
study manifestations of the proximity effect.

A natural continuation of this work would be to investi-
gate the transport properties of this system close to the tran-
sition lines when the incident electron energy is on the order
of the Thouless energy. A careful analysis of regions away
from the transition lines was presented in Ref. 10 with many
interesting results. Another important problem is the study of
FCS of a hybrid NS system in the presence of a magnetic
field which breaks the time-reversal symmetry. In this case
the connection between Andreev reflection eigenvalues and
transmission eigenvalues of the correspondent normal sys-
tem is no longer valid and we must work with the whole
scattering matrix of the cavity.
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APPENDIX: EXPANSION COEFFICIENTS

In Sec. III we obtained the following power-series expan-
sion for gNS�	�, Eq. �26�:
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FIG. 5. Average density of An-
dreev reflection eigenvalues at x
=0 as a function of the transparen-
cies of the barriers. In the T1T2

plane we recover the phase dia-
gram for the quantum transition.
The solids lines correspond to the
lines �=�0 and �=1.

G. C. DUARTE-FILHO AND A. M. S. MACÊDO PHYSICAL REVIEW B 80, 035311 �2009�

035311-6



gNS�	� = �0 + �1	2 + �2	4 + . . . . �A1�

Here we present the expansion coefficients ��0, �1, and �2�
in terms of the expansion coefficients of the roots �, shown
in Eq. �22�. We get

�0 = NT2�1 − tA2�J2B , �A2�

where J= �1+ tA2�−1, and t=1−T2,

�1 =
NT2J4

2
�− t3��B − 2D�A6 + 4CBA5� − t2��− 2tB3 + B − 3D�A4 − 8CBA3�

+ t���1 − 12t�B − 2D�A2 + 12CBA� + 2�tB2 + 1�B − 2D� , �A3�

�2 =
NT2J6

8
�− t5��B + 4D − 8F�A3 − 8��B − 2D�C − 2BE�A2 + 32CB3�A7 + t4�24t�− 4B2 + DB + C2�B − 3�B + 4D − 8F��A8

+ 2t3��4t�tB4 − 2�6�C2 + DB� − 8B2��B − B − 4D + 8F�A − 24�− 6tCB3 + CB − 2�BE + CD���A5

− 2t2�20t�3tB3 + 6�DB + C2� − B2�B − B − 4D + 8F�A4 − 32t2�− 5tB3C + 2��C − 2E�B − 2CD��A3

+ t�8t�15B4 + 2B2 − 12�C2 + DB��B + 3�B + 4D − 8F��A2 + 8t�− 20tB3C + 3�B�2E − C� + 2CD��A

− �4t�tB4 + �B − 6D�B − 6C2�B − B − 4D + 8F�� . �A4�

The variables C, D, E, and F are presented below in terms of the following variables: �1= �1−T2�T1, �2
= �2T1�aT2,

�3= �1+2a�T1T2, and �4= �1+aT2�T1, �= �4�1A3+3�2
−A2+2T1T2�1+2a�A+�2

−�−1

C = −
�

2
���2

+ − 4�1�2B + 1��A3 + 12��1�B + 1� − aT2�BA2

+ �2�3�2
−B − 2�3�B − �4 + 3aT2�T1 + 2aT2�A + 2��3B + 2��4 − aT2��B� �A5�

D = −
�

2
��4�1�B − 2C + 1� − �2

+�A3 + 12��1��2C − B − 1�B + C� + aT2�B − C��A2

+ �4��1�2B + 3� − aT2�B2 + 12�2
−T1T2CB + 2�3�B − 2C� + �4 + 3aT2�T1 − 2aT2�A

+ 2���2
− − �3 − B�B + 2��3 − �4 + aT2��B + 4��4 − aT2�C� �A6�

E = −
�

8
��16�1�C − B − 2D − 1� + �10 + 3T1�aT2�A3 + 24��1��B + 4�D − C� + 2�B + 2C2� + 2��1 − aT2��D − C� − 48aT2B�A2

+ �8�− 4�1B2 + 6��1�2C − 1� + aT2�B + 12��1 − aT2�C + 6�2
−D − �3�B + 24�2

−C2 + 8�3C − 16�3D − �16 + 13aT2�T1

+ 10aT2�A + 4�2�1B4 + 4��1 − aT2�B3 + �6�2
−C + �3�B2 + 4��3�D − C� + �4 − aT2�B + 2�3C2� + 4�aT2 − �4��C − D��

�A7�

F = −
�

8
��4�1�3B + 4�D − C − 2E + 1�� − �10 + 3T1�aT2�A3 + �24�1�− B2 + 2�C − 2�D − E� − 1��B + 48��aT2B − �1C�C + 2D��

+ �C − D + E���1 − aT2���A2 + �16�1B3 + 48�2�1�D − C� + ��1 − aT2��B2 + 6�16��1C2 + ��1 − aT2��D − C�� + 8�2
−E + �3�B

+ 48���1 − aT2�C2 + �2
−D� + 8�3�D − C − 2E��A − 4�− 2�1B4 + 4��1�2C − 1� + aT2�B3 + �12��1 − aT2�C + 6�2

−D − �3�B2

+ 2�3�2
−C2 + �3�C − 2�D − E�� − 2��4 − aT2��B + 2��4�2�D + 1� − C� − 2T2�C − 8��4 − aT2��D − E��� �A8�

The coefficients A and B are given by Eq. �24� and Eq. �25�, respectively, for the most general case presented in Sec. IV.
With �0, �1, and �2 we can compute the first three cumulants analytically through Eqs. �27�–�29�. The behavior of such
cumulants as we vary the barriers transparencies are shown in Fig. 2.
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